Efficiencies of the NJp, Maximum Likelihood, and Bayesian Methods of Phylogenetic Construction for Compositional and Noncompositional Genes.
نویسندگان
چکیده
At the present time it is often stated that the maximum likelihood or the Bayesian method of phylogenetic construction is more accurate than the neighbor joining (NJ) method. Our computer simulations, however, have shown that the converse is true if we use p distance in the NJ procedure and the criterion of obtaining the true tree (Pc expressed as a percentage) or the combined quantity (c) of a value of Pc and a value of Robinson-Foulds' average topological error index (dT). This c is given by Pc (1 - dT/dTmax) = Pc (m - 3 - dT/2)/(m - 3), where m is the number of taxa used and dTmax is the maximum possible value of dT, which is given by 2(m - 3). This neighbor joining method with p distance (NJp method) will be shown generally to give the best data-fit model. This c takes a value between 0 and 1, and a tree-making method giving a high value of c is considered to be good. Our computer simulations have shown that the NJp method generally gives a better performance than the other methods and therefore this method should be used in general whether the gene is compositional or it contains the mosaic DNA regions or not.
منابع مشابه
Improving the Performance of Bayesian Estimation Methods in Estimations of Shift Point and Comparison with MLE Approach
A Bayesian analysis is used to detect a change-point in a sequence of independent random variables from exponential distributions. In This paper, we try to estimate change point which occurs in any sequence of independent exponential observations. The Bayes estimators are derived for change point, the rate of exponential distribution before shift and the rate of exponential distribution after s...
متن کاملComparison of Artificial Neural Network, Decision Tree and Bayesian Network Models in Regional Flood Frequency Analysis using L-moments and Maximum Likelihood Methods in Karkheh and Karun Watersheds
Proper flood discharge forecasting is significant for the design of hydraulic structures, reducing the risk of failure, and minimizing downstream environmental damage. The objective of this study was to investigate the application of machine learning methods in Regional Flood Frequency Analysis (RFFA). To achieve this goal, 18 physiographic, climatic, lithological, and land use parameters were ...
متن کاملComparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome
Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data. Methods: This study use...
متن کاملMolecular identification of Tilletia controversa and T. caries, the causal agent of wheat dwarf and common bunt
Common and dwarf bunt of wheat are recognized as being caused by three closely related species, Tilletia caries and T. laevis as common bunt, and T. controversa as dwarf bunt. The morphological characteristics of two species including T. controversa and T. caries were studied from wheat grown in two provinces of Iran, Lorestan and Chaharmahal–o-Bakhtiari duri...
متن کاملHyperbolic Cosine Log-Logistic Distribution and Estimation of Its Parameters by Using Maximum Likelihood Bayesian and Bootstrap Methods
In this paper, a new probability distribution, based on the family of hyperbolic cosine distributions is proposed and its various statistical and reliability characteristics are investigated. The new category of HCF distributions is obtained by combining a baseline F distribution with the hyperbolic cosine function. Based on the base log-logistics distribution, we introduce a new di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 33 6 شماره
صفحات -
تاریخ انتشار 2016